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Abstract—In this paper, we discuss how to construct the 

rigged Hilbert space of the time evolution operator of the 

position-dependent quantum walks, and obtain the 

properties of the time evolution operator on the rigged 

Hilbert space. 
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I. INTRODUCTION 
Recently, position-dependent quantum walks has 

attracted extensive attention (see, e.g., [1-3]). In 2015, 

Asch et al. [4] proved spectral stability and propagation 

properties for general asymptotically uniform models by 

means of unitary Mourre theory, and proved the existence 

of singular continuous spectrum of the time evolution 

operator. In 2016, Suzuki [5] proved that the position-

dependent Heisenberg operator converges to the 

asymptotic velocity operator. Richard and Suzuki [6,7] 

obtained the weak limit theorem of quantum walks based 

on the new exchange method of independent unitary 

operators in two-Hilbert spaces setting. Canter et al. [8] 

and Segawa-Suzuki [5,9] proved that if the initial state 

has an overlap with an eigenspace of the time evolution 

operator, then the associated quantum walks has 

localization. 

In quantum walks model, the eigenvalues of time 

evolution operators play an important role in localization. 

For the unitary time evolution operator 𝕌 of one-

dimensional two-state quantum walk, its eigenvalues and 

eigenspaces are defined as follows. If equation 𝕌ψ =

eiθψ, θ ∈ [0,2π)  has nontrivial solutionψ ∈ l2(ℤ, ℂ2) ,  

then eiθ is called the eigenvalue of 𝕌 . Moreover, the 

eigenspace ℰ(θ)  formed by the eigenvector is a 

subspace of ψ ∈ l2(ℤ, ℂ2). 

In 2019, Segawa and Morioka [13] obtained a 

detection method for edge defects by embedded 

eigenvalues of its time evolution operator. Using Sobolev 

and Besov spaces, Morioka Hden [12] studied the spectral 

analysis and scattering theory of the time evolution 

operator of position-dependent quantum walks, and 

constructed its generalized  eigenfunction. Recently, 

Maeda M et al. [10] proposed a generalized eigenfunction 

problem for a quantum walk depending on position, as 

follows 

𝒰φ = eiλφ,   λ ∈ ℂ ∕ 2πℤ,          (1.1)                           

where φ：ℤ → ℂ
2

. Roughly speaking, the generalized 

eigenfunction is not in l2(ℤ, ℂ
2

), but in l2(ℤ, ℂ
∞
). This is 

a generalization of tunneling solutions of the discrete time 

quantum walks given in [11]. Böhm [15] proposed that if 

the time evolution operator has continuous spectrum, the 

rigged Hilbert space can be used to describe the 

generalized eigenfunction space. In 2013, Liu and Huang 

[14] et al. studied the generalized eigenvector expansion 

of the Liouville operator and constructed the 

corresponding rigged Liouville space. Motivated by [14], 

we discuss how to construct the suitable rigged Hilbert 

space for a given quantum walk and examine properties 

of its evolution operator accordingly. 

II. PRELIMINARIES  

This section briefly recalls some necessary concepts 

and facts about position-dependent quantum walks as 

well as Gel'fand triples.  

A. Position-Dependent Quantum Walks 

Let l2(ℤ, ℂ2)  be the space of square summable 

function defined on the integer set ℤ and valued in ℂ2, 

namely 

𝑙2(ℤ, ℂ2) = {𝜙: ℤ → ℂ2| ∑ ||𝜙(𝑥)||2 < ∞𝑥∈ℤ }. (2.1)                                         

Its inner product 〈∙,∙〉l2(ℤ,ℂ2) is given by 

〈𝜙, 𝜓〉𝑙2(ℤ,ℂ2) = ∑ 〈𝜙(𝑥), 𝜓(𝑥)〉𝑥∈ℤ , 𝜙, 𝜓 ∈ 𝑙2(ℤ, ℂ2). 

(2.2)                                      

We use || ∙ ||l2(ℤ,ℂ2)to represent the norm generated by 

the inner product 𝑙2(ℤ, ℂ2). Moreover, its orthonormal 

basis is {𝜙𝑥,𝑗  | 𝑥 ∈ ℤ, 𝑗 = 1,2} , where 𝜙𝑥,𝑗 is the 

function defined by ϕx,j(z) = δx(z) ej, z ∈ ℤ , with 

{ej | j = 1,2} being the canonical orthonormal basis of 

ℂ2and δz denotes Dirac symbolic function at 𝑥 defined 

by 

δx(z) = {
z,       z = x;             
0,      z ≠ x, z ∈ ℤ .        (2.3) 

For position-dependent quantum walks, let 

l2(ℤ, ℂ2)  be the space of state, the time evolution 

operator 𝒰 is given by 

[𝒰ϕ](x) = P(x + 1)ϕ(x + 1) + Q(x − 1)ϕ(x − 1), 

 𝑥 ∈ ℤ ,                                     
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(2.4) 

where ϕ ∈ l2(ℤ, ℂ2) and 

P(x) = [
a(x) b(x)

0 0
], Q(x) = [

0 0
c(x) d(x)

]. 

Here we assume C(x)): =  P(x) + Q(x) ∈ U(2)  for 

every x ∈ ℤ, where U(2) is the set of all 2 × 2 unitary 

matrices. We denote by C the operator of multiplication 

by C(x) for each x ∈ ℤ, i.e., (Cϕ)(x) = C(x)ϕ(x) for 

ϕ ∈ l2(ℤ, ℂ2). we call C the coin operator. The operator 

𝒰 is written by 𝒰 = SC where S: l2(ℤ, ℂ2) → l2(ℤ, ℂ2) 

is the shift operator defined by 

S(x) = [
T+ 0
0 T−

] , (T±ϕ)(x) ∶= ϕ(x ∓ 1). 

By definition, S and C preserve the l2  norm, and so 

does 𝒰. If the initial state is ϕ0 ∈ ℋ, then the position 

related state at time t ∈ ℤ is ϕ(t,∙) = 𝒰tϕ0. 

Dirac creates the Dirac bracket system to make the 

laws of quantum mechanics appear in the form of 

operators, quantum mechanics [17] can be presented to us 

in a more concise and universal form. The following 

mathematical principles must be satisfied [18]: 

(1)  Let A is a self-adjoint operator, then for ∀ λ ∈

σ(A), there exists an “eigenvector” Fλ such that 

 AFλ = λFλ.                (2.5).                                                                 

(2)  Every wave function φ can be expanded with 

the “eigenvectors” 

φ = ∫ 〈λ, φ〉Fλσ(A)
dλ.          (2.6).                                                            

(3)  “eigenvectors” are orthogonal, i.e., 

 〈λ, λ′〉 = δ(λ − λ′).            (2.7).                                                             

Remark 2.1 The above description is only a special case. 

in general, differing with a weighted function μ(λ) is 

allowed, i,e., 

(2’)  Every wave function φ  can be expanded 

with  “eigenvectors” 

 φ = ∫ 〈λ, φ〉Fλσ(A)
dμ(λ).          (2.8).                                                           

 

(3’)  “eigenvectors” are orthogonal, i.e., 

  〈λ, λ′〉dμ(λ′) = δ(λ − λ′)dλ′.    (2.9).                                                                    

The expanding form of a vector as (2.6) or (2.8) is 

called the generalized eigenvector expansions. 

B. Gel'fand Triples and The Gel'fand-Maurin 

Theorem 

Definition 2.1 [16] Let ℋ be a Hilbert space and Φ a 

subspace of ℋ, if there exist countably monotone inner 

products on Φ, which are continuous with respect to the 

original inner product on ℋ , and Φ is complete with 

respect to the topology ιΦ  decided by the countable 

inner products, then we call Φ  a countable Hilbert 

space. 

 

Definition 2.2 [16]  Suppose Φ ⊂ ℋ  is a countable 

Hilbert space, the countably monotone inner products are 

〈∙,∙〉1, 〈∙,∙〉2,⋯ 〈∙,∙〉n, ⋯ 

Let Φn be the completion of Φ respected to the inner 

product 〈∙,∙〉n, if ∀ m, there exists, an n > m such that 

the embedded map 𝑇𝑚𝑛: Φn → Φ𝑚 is nuclear, i.e., 𝑇𝑚𝑛 

have the form 

𝑇𝑚𝑛φ = ∑ λk〈φ
k
, φ〉nψ

k
∞
k=1 ,  ∀ φ ∈ Φn, 

where {φ
k

} and {ψ
k

} are the orthogonal bases for 

Φ𝑛  and Φ𝑚  respectively, and the series ∑ λk
∞
k=1  is 

convergent with λk ≥ 0 , then we call Φ  a nuclear 

space. Furthermore, we call Φ ⊂ ℋ ⊂ Φ∗ a Gel'fand 

triple or rigged Hilbert space, where Φ∗  is the 

conjugate dual space of Φ  with respect to the 

topology ιΦ. 

Lemma 2.1 [21] Let A be an operator in the nuclear 

space Φ , and Φ is invariant under A , then A  is 

continuous with respect to the topology ιΦ , that is, 

∀ p, ∃ m > p, satisfying 

 ||Aφ||p ≤ M||φ||m,  ∀ φ ∈ Φ,      (2.10)                                                    

where M = M(p, m). 

  Let A be a self-adjoint operator on the Hilbert space 

ℋ. If A has no continuous spectrum, then for ∀ λ ∈

σp(A) , “eigenvector” Fλ  is just the corresponding 

eigenvector, i.e., Fλ ∈ ℋ . Obviously, Fλ  satisfies 

(2.5) and (2.7), and all the eigenvectors compose an 

orthogonal basis for the Hilbert space, i.e., (2.6) holds. 

Therefore, if A has only eigenvalues, then the Hilbert 

space is enough for studying the operator A. 

However, according to document [12], when 𝒰 

has continuous spectrum, ∀ λ ∈ σc(𝒰) , we need to 

know what kind of space that the corresponding 

“eigenvector” locate. 

Theorem 2.1 (Gel′fand − Maurin Theorem) [16]  Let 

Φ ⊂ ℋ ⊂ Φ∗ be a rigged Hilbert space and let ℋ →

L2(ϑ), φ → φ(λ) be an isometric isomorphism of ℋ 

with the L2 function space of a measure space (ℝ, ϑ), 

then for ∀ λ ∈ ℝ , we can construct a continuous 

conjugate linear functional Fλ on Φ∗. Then we have  

φ(λ)=Fλ(φ),  φ ∈ Φ. 

In rigged Hilbert space Φ ⊂ ℋ ⊂ Φ∗, Φ ⊂ 𝒟(𝐴), 

and for ∀ λ ∈ σc(A) , we can find a corresponding 

“eigenvector” Fλ ∈ Φ∗, which could be a generalized 

eigenvector. There is a vector F ∈ Φ∗, which is called 

the generalized eigenvector corresponding to λ ∈

σ(A). For ∀ ϕ ∈ Φ, we have  

F(Aφ) = λF(φ), 

and F is denoted Fλ. 

Theorem 2.2 (A special case of the  Gel′fand −

Maurin Theorem) [16,18] Let Φ ⊂ ℋ ⊂ Φ∗ be rigged 

Hilbert space, A ∈ ℋ  be a self-adjoint operator on 

ℋ, Φ ⊂ 𝒟(A), and A has a cyclic vector, then ∀ λ ∈

σc(A), there exists a generalized eigenvector Fλ such 
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that 

A∗Fλ = λFλ, 

i.e., 
〈Aφ, Fλ〉 = 〈φ, A∗Fλ〉 = λ〈φ, Fλ〉,   ∀ φ ∈ Φ, 

moreover, there exists a unique positive measure dμ

(λ) on σc(A) such that 

〈φ, ψ〉 = ∫ 〈φ, λ〉〈λ, ψ〉
σ(A)

dμ(λ).      (2.11)                                                

   If Φ ⊂ ℋ ⊂ Φ∗  is a rigged Hilbert space, where 

Φ ⊂ 𝒟(A) and A has a cyclic vector, then for ∀ λ ∈

σc(A) , Fλ ∈ Φ∗ is not a usual eigenvector, but a 

generalized eigenvector. By Theorem 2.2, it is easy to 

prove that Fλ satisfies (2.4), (2.8) and (2.9). 

Remark 2.2  If A  doesn't have a cyclic vector, 

similarly, we can construct the generalized 

eigenvector expansions as (2.5), (2.8) and (2.9). But 

the technique of continuous direct sum [16] or direct 

integrals [19] of Hilbert spaces is needed. 

III.  MAIN RESULTS  

By using a specific orthonormal basis for the spaces 

l2(ℤ, ℂ
2

), we construct a sequence of dense subspaces 

𝒮p(ℤ, ℂ
2

), defined as follows 

𝒮p(ℤ, ℂ
2

) = {φ: ℤ → ℂ
2

| ∑ (1 + |x|)2p||ϕ(x)||
ℂ

2
2

x∈ℤ   

< ∞},                        (3.1)                                       

where integer p ≥ 0. In addition, it is easy to prove that 

𝒮p(ℤ, ℂ
2

) forms a complex Hilbert space with respect to 

the inner product 〈∙,∙〉p , where the inner product 〈∙,∙〉p  

is given by 

〈φ, ψ〉p = ∑ (1 + |x|)2p〈φ(x), ψ(x)〉ℂ2x∈ℤ ,  φ, ψ ∈                                                

   𝒮p(ℤ, ℂ2).                                (3.2) 

We use || ∙ ||p the corresponding norm, which satisfies 

the following relationship 

||φ||p
2 = ∑ (1 + |x|)2p||φ(x)||ℂ2

2
x∈ℤ ,  φ ∈

𝒮p(ℤ, ℂ2).                                   

(3.3)  

In the following, in order to the convenience of 

expression, we simply denote by 𝒮p  the Hilbert space 

𝒮p(ℤ, ℂ
2

).  

Proposition 3.1 For p ≥ 0 , one has {ϕx,j| x ∈ ℤ, j =

1, 2} ⊂ 𝒮p  and moreover the system {(1 +

|x|)−pϕx,j| x ∈ ℤ, j = 1, 2} forms an orthonormal basis 

for 𝒮p. 

Proof.  For x ∈ ℤ, j = 1, 2,  a direct calculation gives 

||ϕx,j||p = ∑ (1 + |y|)2p||ϕx,j(y)||
ℂ

2
2

y∈ℤ   

= ∑ (1 + |y|)2p||δx(y)ej||ℂ2
2

y∈ℤ     

= (1 + |x|)2p < ∞, 

which means that ϕx,j ∈ 𝒮p. Since {ϕx,j|x ∈ ℤ, j = 1, 2} 

is an orthonormal system of l2(ℤ, ℂ
2

) , then {(1 +

|x|)−pϕx,j|x ∈ ℤ, j = 1, 2} is orthogonal in 𝒮p. we have                              

〈(1 + |x|)−pϕx,j, φ〉p 

= ∑ (1 + |y|)2p〈(1 + |x|)−pϕx,j(y), φ(y)〉y∈ℤ   

= (1 + |x|)p〈ϕx,j, φ〉,    φ ∈ 𝒮p. 

So, if φ ∈ 𝒮p  satisfies that 〈(1 + |x|)−pϕx,j,φ〉p = 0 , 

for all x ∈ ℤ, j = 1, 2 , then it has 〈ϕx,j,φ〉 = 0 . It 

implies that φ = 0 because the system {ϕx,j| x ∈ ℤ, j =

1, 2}  is an orthonormal basis l2(ℤ, ℂ
2

) . Thus {(1 +

|x|)−pϕx,j| x ∈ ℤ, j = 1, 2} is an orthonormal basis 𝒮p. 

It is easy that (1 + |x|)2p ≥ 1 for all x ∈ ℤ. This 

implies that 𝒮p ⊂ 𝒮q  and || ∙ ||p ≤ || ∙ ||q  whenever 

0 ≤ p ≤ q. Thus we actually get a sequence of complex 

Hilbert spaces: 

⋯ ⊂ 𝒮p+1 ⊂ 𝒮p ⋯ ⊂ 𝒮1 ⊂ 𝒮0 = l2(ℤ, ℂ
2

). 

We put 

𝒮 = ⋂ 𝒮p
∞
p=0 , 

 

and endow 𝒮  with the topology ι𝒮  generated by the 

norm sequence {|| ∙ ||p}p≥0. Note that, for each  p ≥ 0, 

𝒮p is exactly the complete space of 𝒮 with respect to 

|| ∙ ||p. Thus 𝒮 is a countable Hilbert space. In addition, 

according to the definition of 𝒰, we can get 𝒮 ⊂ 𝒟(𝒰) 

. Furthermore, the following proposition shows that 𝒮 

has a better property. 

Proposition 3.2  The space 𝒮  is a nuclear space, 

namely, for any p ≥ 0, there exists q > p, such that the 

inclusion mapping Tpq: 𝒮q → 𝒮pdefined by Tpq(φ) = φ 

is a Hilbert-Schmidt operator. 

Proof.   Let p ≥ 0 then there exists q > p such that 

2(q − p) > 1. By Proposition 3.1, {(1 + |x|)−qϕx,j| x ∈

ℤ, j = 1, 2} is an orthonormal basis for 𝒮q. For p ≥ 1, 

the positive term series ∑ (1 + |x|)−p
x∈ℤ  converges. 

Thus, we have 

||Tpq||HS
2 = ∑ ||Tpq(1 + |x|)−qϕx,j||p

2

x∈ℤ

 

= ∑ ∑(1 + |y|)2p||Tpq(1 + |x|)−qϕx,j(y)||
ℂ

2
2

y∈ℤx∈ℤ

 

= ∑ ∑(1 + |y|)2p||Tpq(1 + |x|)−qδx(y)ej||ℂ2
2

y∈ℤx∈ℤ

 

= ∑ (1 + |x|)−2(q−p)
x∈ℤ < ∞, 

where || ∙ ||HS denotes the Hilbert-Schmidt norm of an 

operator. Therefore the inclusion mapping Tpq: 𝒮q → 𝒮p 

is a Hilbert-Schmidt operator. 

For p ≥ 0, we denote by 𝒮p
∗ the dual (conjugate) 

space of 𝒮p, and || ∙ ||−p the norm of 𝒮p
∗. Then 𝒮q

∗ ⊂

𝒮p
∗  and || ∙ ||−p ≤ || ∙ ||−q  whenever 0 ≤ p ≤ q . 

According to the general theory of countable Hilbert 

spaces, the following lemma hold. 

Lemma 𝟑. 𝟏[16,20] Let 𝒮∗ be the dual of 𝒮 and endow 

it with the strong topology, then 
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𝒮∗ = ⋃ 𝒮p
∗

∞

p=0

 

And, moreover, the inductive limit topology on 𝒮∗ given 

by space sequence {𝒮p
∗}p≥0  coincides with the strong 

topology. 

Theorem 3.1 By identifying l2(ℤ, ℂ
2

) with its dual 

naturally, then Gel'fand triple 

𝒮 ⊂ l2(ℤ, ℂ
2

) ⊂ 𝒮∗         (3.4)                                                       

can be constructed, which is referred to as the rigged 

Hilbert space. 

Proof.  It can be proved by Proposition 3.2 and Lemma 

3.1. 

Proposition 3.3  The system {ϕx,j| x ∈ ℤ, j = 1, 2}  is 

contained in 𝒮 and, moreover, it forms a basis for 𝒮 in 

the sense that 

ξ = ∑ 〈ϕx,j, ξ〉x∈ℤ,
j=1,2

ϕx,j,  ξ ∈ 𝒮, 

where 〈∙,∙〉  is the inner product of l2(ℤ, ℂ
2

)  and the 

series converges in the topology of 𝒮. 

Proof.  It follows from Proposition 3.1 and the 

definition of 𝒮 that the system {ϕx,j| x ∈ ℤ, j = 1, 2} is 

contained in 𝒮. Let ξ ∈ 𝒮, for each p ≥ 0, we have ξ ∈

𝒮p, which together with proposition 3.1 gives 

ξ = ∑ 〈(1 + |x|)−pϕx,j, ξ〉p(1 + |x|)−pϕx,jx∈ℤ,
j=1,2

, 

(3.5)                                    

where the series on the right-hand side converges in norm 

|| ∙ ||p. In addition, we find 

〈(1 + |x|)−pϕx,j, ξ〉p = (1 + |x|)−p〈ϕx,j, ξ〉, p ≥ 0.                                             

(3.6) 

Thus, 

ξ = ∑ 〈ϕx,j, ξ〉pϕx,jx∈ℤ,
j=1,2

, p ≥ 0,      (3.7)                                                      

where the series on the right-hand side converges in norm 

|| ∙ ||p, namely, in the topology of 𝒮. 

Next, we naturally extend 𝒰 to 𝒮∗ space and the 

operators 𝒰  is not unitary on 𝒮∗ . Moreover, for the 

above rigged Hilbert space 𝒮 ⊂ l2(ℤ, ℂ
2

) ⊂ 𝒮∗ ,  𝒮 ⊂

𝒟(𝒰) , for ∀ λ ∈ σc(𝒰), it can be obtained that 𝒰 has 

a generalized eigenvector Tλ ∈ 𝒮∗, satisfying 

𝒰Tλ = eiλTλ,  λ ∈ ℂ/2πℤ.          (3.8)                                                         

According to the Theorem 2.2, we can get Tλ satisfies 

the expansion of the generalized eigenfunction such as 

(2.8). 

Theorem 3.2 Let the above triplet 𝒮 ⊂ l2(ℤ, ℂ
2

) ⊂ 𝒮∗ is 

the rigged Hilbert space of 𝒰 , then the following 

statements holds 

(1) 𝒰 is continuous with respect to nuclear topology ι𝒮  

on 𝒮; 

(2) The nuclear space 𝒮 is invariant under the action 

of 𝒰. 

Proof. Since 𝒮p is dense in 𝒮 and (2.10) holds, then 𝒰 

is continuous with respect to the topologyι𝒮 . Next, we 

prove that the nuclear space 𝒮  is invariant under the 

action of 𝒰 . For ∀ φ ∈ 𝒮 , by the definition of 𝒮 , 

∃  {φ
n

} ⊂ 𝒮, such that 

lim
n→∞

||φ
n

− φ||p = 0, p = 1,2, ⋯.      (3.9)                                                

By (2.10), {𝒰φ
n

} is a cauchy sequence in 𝒮p, p ≥ 0. 

Clearly 𝒮 is complete, then for φ ∈ 𝒮, we have  

lim
n→∞

||𝒰φ
n

− φ||p = 0, p = 1,2, ⋯.    (3.10)                                                

On the other hand, 𝒰 is closed, namely 

𝒰φ = ψ ∈ 𝒮, ∀ φ ∈ 𝒮. 

So 𝒮 is invariant under 𝒰. 

Corollary 3.1 Let 𝒮 ⊂ l2(ℤ, ℂ
2

) ⊂ 𝒮∗  be the above 

rigged Hilbert space . If 𝒮 ⊂ 𝒟(𝒰)  and the nuclear 

space 𝒮 is invariant under the action of 𝒰, then 

𝒮 ⊂ ⋂ 𝒟(𝒰n)∞
n=1 .             (3.11).                                                          
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